mat3.h
1 /*
2 ** UICore
3 ** Copyright (c) 1997-2015 The UICore Team
4 **
5 ** This software is provided 'as-is', without any express or implied
6 ** warranty. In no event will the authors be held liable for any damages
7 ** arising from the use of this software.
8 **
9 ** Permission is granted to anyone to use this software for any purpose,
10 ** including commercial applications, and to alter it and redistribute it
11 ** freely, subject to the following restrictions:
12 **
13 ** 1. The origin of this software must not be misrepresented; you must not
14 ** claim that you wrote the original software. If you use this software
15 ** in a product, an acknowledgment in the product documentation would be
16 ** appreciated but is not required.
17 ** 2. Altered source versions must be plainly marked as such, and must not be
18 ** misrepresented as being the original software.
19 ** 3. This notice may not be removed or altered from any source distribution.
20 **
21 ** Note: Some of the libraries UICore may link to may have additional
22 ** requirements or restrictions.
23 **
24 ** File Author(s):
25 **
26 ** Magnus Norddahl
27 ** Mark Page
28 ** Harry Storbacka
29 */
30 
31 #pragma once
32 
33 #include "mat2.h"
34 #include "mat4.h"
35 #include "vec3.h"
36 #include "angle.h"
37 #include <cstdint>
38 #include <string.h>
39 
40 namespace uicore
41 {
42  template<typename Type>
43  class Mat2;
44 
45  template<typename Type>
46  class Mat3;
47 
48  template<typename Type>
49  class Mat4;
50 
54  template<typename Type>
55  class Mat3
56  {
57  public:
59  Mat3()
60  {
61  for (auto & elem : matrix)
62  elem = 0;
63  }
64 
66  Mat3(const Mat3<Type> &copy)
67  {
68  for (int i = 0; i < 9; i++)
69  matrix[i] = copy.matrix[i];
70  }
71 
73  explicit Mat3(const Mat2<Type> &copy);
74 
76  explicit Mat3(const Mat4<Type> &copy);
77 
79  explicit Mat3(const float *init_matrix)
80  {
81  for (int i = 0; i < 9; i++)
82  matrix[i] = (Type)init_matrix[i];
83  }
84 
86  explicit Mat3(Type m00, Type m01, Type m02, Type m10, Type m11, Type m12, Type m20, Type m21, Type m22)
87  {
88  matrix[0 * 3 + 0] = m00; matrix[0 * 3 + 1] = m01; matrix[0 * 3 + 2] = m02;
89  matrix[1 * 3 + 0] = m10; matrix[1 * 3 + 1] = m11; matrix[1 * 3 + 2] = m12;
90  matrix[2 * 3 + 0] = m20; matrix[2 * 3 + 1] = m21; matrix[2 * 3 + 2] = m22;
91  }
92 
94  explicit Mat3(const double *init_matrix)
95  {
96  for (int i = 0; i < 9; i++)
97  matrix[i] = (Type)init_matrix[i];
98  }
99 
101  explicit Mat3(const int64_t *init_matrix)
102  {
103  for (int i = 0; i < 9; i++)
104  matrix[i] = (Type)init_matrix[i];
105  }
106 
108  explicit Mat3(const int32_t *init_matrix)
109  {
110  for (int i = 0; i < 9; i++)
111  matrix[i] = (Type)init_matrix[i];
112  }
113 
115  explicit Mat3(const int16_t *init_matrix)
116  {
117  for (int i = 0; i < 9; i++)
118  matrix[i] = (Type)init_matrix[i];
119  }
120 
122  explicit Mat3(const int8_t *init_matrix)
123  {
124  for (int i = 0; i < 9; i++)
125  matrix[i] = (Type)init_matrix[i];
126  }
127 
128  static Mat3<Type> null();
129 
130  static Mat3<Type> identity();
131 
141  static Mat3<Type> rotate(Type angle, Type x, Type y, Type z, bool normalize = true);
142 
150  static Mat3<Type> rotate(float angle, Vec3<Type> rotation, bool normalize = true)
151  {
152  return rotate(angle, rotation.x, rotation.y, rotation.z, normalize);
153  }
154 
160  static Mat3<Type> rotate(Type angle_x, Type angle_y, Type angle_z, EulerOrder order);
161 
167  static Mat3<Type> rotate(Type angle);
168 
174  static Mat3<Type> scale(Type x, Type y);
175 
180  static Mat3<Type> scale(const Vec3<Type> &xy)
181  {
182  return scale(xy.x, xy.y);
183  }
184 
191  static Mat3<Type> translate(Type x, Type y);
192 
198  static Mat3<Type> translate(const Vec2<Type> &xy)
199  {
200  return translate(xy.x, xy.y);
201  }
202 
211  static Mat3<Type> multiply(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2);
212 
220  static Mat3<Type> add(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2);
221 
229  static Mat3<Type> subtract(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2);
230 
235  static Mat3<Type> adjoint(const Mat3<Type> &matrix);
236 
242  static Mat3<Type> inverse(const Mat3<Type> &matrix);
243 
248  static Mat3<Type> transpose(const Mat3<Type> &matrix);
249 
255  static bool is_equal(const Mat3<Type> &first, const Mat3<Type> &second, Type epsilon)
256  {
257  for (int i = 0; i < 9; i++)
258  {
259  Type diff = second.matrix[i] - first.matrix[i];
260  if (diff < -epsilon || diff > epsilon) return false;
261  }
262  return true;
263  }
264 
266  Type matrix[9];
267 
269  double det() const;
270 
274  Mat3<Type> &adjoint();
275 
279  Mat3<Type> &inverse();
280 
285 
290  bool is_equal(const Mat3<Type> &other, Type epsilon) const { return Mat3<Type>::is_equal(*this, other, epsilon); }
291 
293  operator Type const*() const { return matrix; }
294 
296  operator Type *() { return matrix; }
297 
299  Type &operator[](int i) { return matrix[i]; }
300 
302  const Type &operator[](int i) const { return matrix[i]; }
303 
305  Type &operator[](unsigned int i) { return matrix[i]; }
306 
308  const Type &operator[](unsigned int i) const { return matrix[i]; }
309 
311  Mat3<Type> &operator =(const Mat3<Type> &copy) { memcpy(matrix, copy.matrix, sizeof(matrix)); return *this; }
312 
314  Mat3<Type> &operator =(const Mat4<Type> &copy);
315 
317  Mat3<Type> &operator =(const Mat2<Type> &copy);
318 
320  Mat3<Type> operator *(const Mat3<Type> &mult) const;
321 
323  Mat3<Type> operator +(const Mat3<Type> &add_matrix) const;
324 
326  Mat3<Type> operator -(const Mat3<Type> &sub_matrix) const;
327 
329  Vec2<Type> operator *(const Vec2<Type> &mult) const;
330 
332  bool operator==(const Mat3<Type> &other) const
333  {
334  for (int i = 0; i < 9; i++)
335  if (matrix[i] != other.matrix[i]) return false;
336  return true;
337  }
338 
340  bool operator!=(const Mat3<Type> &other) { return !((*this) == other); }
341  };
342 
343  template<typename Type>
344  inline Mat3<Type> Mat3<Type>::multiply(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2) { return matrix_1 * matrix_2; }
345 
346  template<typename Type>
347  inline Mat3<Type> Mat3<Type>::add(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2) { return matrix_1 + matrix_2; }
348 
349  template<typename Type>
350  inline Mat3<Type> Mat3<Type>::subtract(const Mat3<Type> &matrix_1, const Mat3<Type> &matrix_2) { return matrix_1 - matrix_2; }
351 
352  template<typename Type>
353  inline Mat3<Type> Mat3<Type>::adjoint(const Mat3<Type> &matrix) { Mat3<Type> dest(matrix); dest.adjoint(); return dest; }
354 
355  template<typename Type>
356  inline Mat3<Type> Mat3<Type>::inverse(const Mat3<Type> &matrix) { Mat3<Type> dest(matrix); dest.inverse(); return dest; }
357 
358  template<typename Type>
359  inline Mat3<Type> Mat3<Type>::transpose(const Mat3<Type> &matrix) { Mat3<Type> dest(matrix); dest.transpose(); return dest; }
360 
361  template<typename Type>
362  inline Mat3<Type> Mat3<Type>::null() { Mat3<Type> m; memset(m.matrix, 0, sizeof(m.matrix)); return m; }
363 
364  template<typename Type>
365  inline Mat3<Type> Mat3<Type>::identity() { Mat3<Type> m = null(); m.matrix[0] = 1; m.matrix[4] = 1; m.matrix[8] = 1; return m; }
366 
367  typedef Mat3<int> Mat3i;
370 }
Mat3< Type > & operator=(const Mat3< Type > &copy)
Copy assignment operator.
Definition: mat3.h:311
static Mat3< Type > subtract(const Mat3< Type > &matrix_1, const Mat3< Type > &matrix_2)
Subtract 2 matrices.
Definition: mat3.h:350
Mat3(const int8_t *init_matrix)
Constructs a 3x3 matrix (copied from 9, 8 bit integers)
Definition: mat3.h:122
static Mat3< Type > identity()
Definition: mat3.h:365
static Mat3< Type > scale(const Vec3< Type > &xy)
Create a 2d scale matrix.
Definition: mat3.h:180
2D matrix
Definition: mat2.h:41
Mat3< Type > operator+(const Mat3< Type > &add_matrix) const
Addition operator.
2D vector
Definition: line.h:43
const Type & operator[](int i) const
Operator that returns the matrix cell at the given index.
Definition: mat3.h:302
Type x
Definition: vec3.h:74
3D matrix
Definition: mat2.h:44
3D vector
Definition: line_ray.h:43
Mat3(const int16_t *init_matrix)
Constructs a 3x3 matrix (copied from 9, 16 bit integers)
Definition: mat3.h:115
Type x
Definition: vec2.h:75
Mat3< Type > & adjoint()
Creates the adjoint (or known as adjugate) of the matrix.
Mat3(const int32_t *init_matrix)
Constructs a 3x3 matrix (copied from 9, 32 bit integers)
Definition: mat3.h:108
Mat3(const Mat3< Type > &copy)
Constructs a 3x3 matrix (copied)
Definition: mat3.h:66
Mat3< Type > & transpose()
Calculate the transpose of this matrix.
Type z
Definition: vec3.h:76
Mat3< double > Mat3d
Definition: mat3.h:369
Mat3(Type m00, Type m01, Type m02, Type m10, Type m11, Type m12, Type m20, Type m21, Type m22)
Constructs a 3x3 matrix (copied from specified values)
Definition: mat3.h:86
Type y
Definition: vec2.h:76
static Mat3< Type > translate(const Vec2< Type > &xy)
Create a 2d translation matrix.
Definition: mat3.h:198
static Mat3< Type > scale(Type x, Type y)
Create a 2d scale matrix.
static Mat3< Type > multiply(const Mat3< Type > &matrix_1, const Mat3< Type > &matrix_2)
Multiply 2 matrices.
Definition: mat3.h:344
static Mat3< Type > null()
Definition: mat3.h:362
EulerOrder
Euler angle rotation order.
Definition: angle.h:40
static Mat3< Type > rotate(float angle, Vec3< Type > rotation, bool normalize=true)
Create a 3d rotation matrix.
Definition: mat3.h:150
static Mat3< Type > translate(Type x, Type y)
Create a 2d translation matrix.
Mat3< Type > & inverse()
Create the matrix inverse. (Returns a zero matrix if the determinent = 0)
Mat3(const double *init_matrix)
Constructs a 3x3 matrix (copied from 9 doubles)
Definition: mat3.h:94
static bool is_equal(const Mat3< Type > &first, const Mat3< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: mat3.h:255
Mat3(const int64_t *init_matrix)
Constructs a 3x3 matrix (copied from 9, 64 bit integers)
Definition: mat3.h:101
static Mat3< Type > rotate(Type angle, Type x, Type y, Type z, bool normalize=true)
Create a 3d rotation matrix.
Mat3< Type > operator*(const Mat3< Type > &mult) const
Multiplication operator.
Mat3< float > Mat3f
Definition: mat3.h:368
const Type & operator[](unsigned int i) const
Operator that returns the matrix cell at the given index.
Definition: mat3.h:308
static Mat3< Type > add(const Mat3< Type > &matrix_1, const Mat3< Type > &matrix_2)
Add 2 matrices.
Definition: mat3.h:347
Mat3()
Constructs a 3x3 matrix (zero'ed)
Definition: mat3.h:59
Type y
Definition: vec3.h:75
Type matrix[9]
The matrix (in column-major format)
Definition: mat3.h:266
Type & operator[](unsigned int i)
Operator that returns the matrix cell at the given index.
Definition: mat3.h:305
Mat3< Type > operator-(const Mat3< Type > &sub_matrix) const
Subtraction operator.
bool is_equal(const Mat3< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: mat3.h:290
double det() const
Calculate the matrix determinant.
Type & operator[](int i)
Operator that returns the matrix cell at the given index.
Definition: mat3.h:299
bool operator==(const Mat3< Type > &other) const
Equality operator.
Definition: mat3.h:332
Definition: Application/application.h:35
Mat3(const float *init_matrix)
Constructs a 3x3 matrix (copied from 9 floats)
Definition: mat3.h:79
4D matrix
Definition: mat2.h:47
bool operator!=(const Mat3< Type > &other)
Not-equal operator.
Definition: mat3.h:340
Mat3< int > Mat3i
Definition: mat3.h:367